LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – **STATISTICS**

FIRST SEMESTER – NOVEMBER 2007

ST 1812 - STATISTICAL COMPUTING - I

BB 8

Date : 05/11/2007 Dept. No. Max. : 100 Marks Time : 1:00 - 4:00

Answer the following questions. Each question carries 33 marks

1. Find the characteristic roots and vectors of the following matrix and also obtain the matrix U such that $U^{T}AU = A$:

$$\mathbf{A} = \begin{bmatrix} 6 & 2 & -2 \\ 2 & 6 & -2 \\ -2 & -2 & 10 \end{bmatrix}$$

Write the quadratic form associated with the matrix. Find the rank, index and signature.

(**OR**)

Find the inverse of the following matrix using partitioning method or sweep out process:

•	[1	-1	2	-1]	
	-1	3	4	2	
A =	2	4	3	1	
	1	2	1	1	

2. The Transient Point (in volts) of PMOS_NMOS Inverters is believed to depend on the length of PMOS and NMOS devices. Build a model with intercept using the following data:

Transient Point (volts)	Length of PMOS device	Length of NMOS device
0.29	8	8
0.20	4	6
4.71	5	5
9.10	4	4
1.37	8	5
0.29	3	3
9.17	8	3
0.38	2	2
3.35	3	3
0.20	2	3
4.97	2	2
1.52	8	6

Test for overall significance of the model. Also test for the significance of the individual regressors.

(**OR**)

 (a) A model with a maximum of four regressors is to be built using a sample of size 30. Carry out 'Backward Elimination Process' to decide the significant regressors given the following information:

$$\begin{split} &SS_{T} = 5431.52, \ SS_{Res}(X_{1}) = 2531.36, \\ &SS_{Res}(X_{2}) = 1812.67, \ SS_{Res}(X_{3}) = 3878.80, \\ &SS_{Res}(X_{4}) = 1767.72, \\ &SS_{Res}(X_{1}, X_{2}) = 115.80, \\ &SS_{Res}(X_{1}, X_{3}) = 2454.14, \\ &SS_{Res}(X_{1}, X_{4}) = 149.52, \\ &SS_{Res}(X_{2}, X_{4}) = 1737.76, \\ &SS_{Res}(X_{3}, X_{4}) = 351.48, \\ &SS_{Res}(X_{1}, X_{2}, X_{3}) = 96.22, \\ &SS_{Res}(X_{1}, X_{2}, X_{4}) = 95.94, \\ &SS_{Res}(X_{1}, X_{3}, X_{4}) = 101.66, \\ &SS_{Res}(X_{2}, X_{3}, X_{4}) = 147.62, \\ &SS_{Res}(X_{1}, X_{2}, X_{3}, X_{4}) = 95.72 \end{split}$$

(b) A model with an intercept and two regressors was built using 12 data-points. The observed, predicted and diagonal elements of the Hat matrix are given below. Compute 'Studentized Residuals', plot the normal probability plot and draw your conclusions:

Yi	Y _i ^	h _{ii}		
11.5	10.22	0.071		
14.88	9.57	0.085		
18.11	20.71	0.043		
17.83	18.37	0.068		
21.5	21.90	0.196		
21	24.72	0.114		
19.75	21.20	0.078		
29	35.67	0.166		
19	16.85	0.096		
35.1	33.46	0.102		
52.32	38.42	0.392		
19.83	28.74	0.121		

3. The distribution of marks secured by students in a particular examination is believed to be a mixture of two normal variates with common variance 25 and equal mixing proportion. Fit the distribution for the following data corresponding to one such distribution.

Marks	Number of
	Students
<10	2
10-20	15
20-30	25
30-40	15
40-50	30
50-60	20
60-70	10
70-80	5
>80	2

(OR)
(a) Generate Five observations from
$$N_2 \left(\begin{bmatrix} 5\\2 \end{bmatrix}, \begin{bmatrix} 10 & -5\\-5 & 8 \end{bmatrix} \right)$$

(b) Generate a sample of size 5 from Cauchy distribution with scale parameter 1 and location Parameter 3

* * * * * * *